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Development of a parallel storm surge model
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SUMMARY

A new parallel storm surge model, the Parallel Environmental Model (PEM), is developed and tested
by comparisons with analytic solutions. The PEM is a 2-D vertically averaged, wetting and drying
numerical model and can be operated in explicit, semi-implicit and fully implicit modes. In the implicit
mode, the propagation, Coriolis and bottom friction terms can all be treated implicitly. The advection
and di�usion terms are solved with a parallel Eulerian–Lagrangian scheme developed for this study.
The model is developed speci�cally for use on parallel computer systems and will function accordingly
in either explicit of implicit modes. Storm boundary conditions are based on a simple exponential decay
of pressure from the centre of a storm. The simulated �ooding caused by a major Category 5 hurricane
making landfall in the Indian River Lagoon, Florida is then presented as an example application of the
PEM. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the population of the world’s coastal communities grows increasingly larger, more at-
tention is now being paid to the health of the surrounding estuarine and coastal waters. For
many years scientists have conducted numerous laboratory and �eld studies to better under-
stand the complex physical and ecological processes of these aquatic environments. Using
the knowledge gleaned from these studies, it is now possible to develop realistic numerical
models, through a rigorous procedure of construction, calibration and validation, to simulate
the dynamics of these estuarine and coastal ecosystems. These numerical models have now
advanced to fully three-dimensional integrated modelling systems composed of coupled cir-
culation, wave, sediment, water quality, light and seagrass models [1, 2]. As the physical and
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ecological processes become better understood, these integrated models are growing larger
and larger and hence, so are their computational demands. In addition to the pure complexity
of these numerical modelling systems, these models are now being applied to both larger
domains and over larger time scales making the computational demands even greater.
One way the increased computational requirements of these estuarine and coastal models

has been dealt with is through parallelism. Parallel processing techniques have been applied
to numerous hydrodynamic models such as: the Miami Isopycnic Coordinate Ocean Model
(MICOM) [3], the CH3D-WES Model [4–6] and the Princeton Ocean Model (POM) [7].
Recently, these techniques have even been applied to the fully coupled integrated modelling
system, CH3D-IMS [8, 9]. These studies focused on converting previously serial codes to
parallel; however, because of the traditionally serial nature of these legacy models (POM,
CH3D, etc.), conversion to a parallel structure usually does not achieve the best e�ciency.
Hence, it is the goal of this study to develop a parallel model from the ground up with no
serial code at all.
The fully parallel model developed herein is designed for a speci�c purpose: to simulate the

storm surge in a large coastal area caused by a major storm (e.g. a hurricane). Hurricanes are
among the most dangerous and damaging natural phenomena. As a hurricane approaches and
impacts the coastline, storm surge �ooding, strong winds, torrential rainfall and tornados can
reek havoc on both coastal and inland communities. Of all these impacts, storm surge accounts
for over 90% of hurricane related deaths [10]; hence, the increasing interest in simulating such
phenomena.
The parallel model developed herein has a two-dimensional formulation and includes a

unique combination of features: the ability to handle wetting and drying of computational
cells automatically, semi-implicit solution of the propagation, bottom friction and Coriolis
terms, a parallel Eulerian–Lagrangian scheme for the solution of the advective and di�usive
terms, and a coupled storm model. After the development and veri�cation of the model is
presented, an example simulation of storm surge in the Indian River Lagoon area of Florida
is presented.

2. GOVERNING DIFFERENTIAL EQUATIONS

The governing three-dimensional Cartesian equations describing free surface �ows can be
derived from the Navier–Stokes equations. After Reynold’s averaging, and applying the hy-
drostatic approximation, the continuity equation and x- and y-momentum equations for a
constant density �uid have the following form [11]:
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where u(x; y; z; t), v(x; y; z; t), w(x; y; z; t) are the velocity components in the horizontal, x- and
y-, and the vertical, z-directions; t is the time; �(x; y; t) is the free surface elevation; g is the
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gravitational acceleration; AH and Av are the horizontal and vertical turbulent eddy coe�cients,
respectively; and D=Dt is the total derivative, @=@t + u@=@x + v@=@y + w@=@z.

3. VERTICAL BOUNDARY CONDITIONS

The boundary conditions at the free surface (z= �) are
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The wind stress is determined from the wind velocity using

�wx = �aCdsuw
√
u2w + v2w

�wy = �aCdsvw
√
u2w + v2w

(5)

where �wx and �
w
y are the components of the wind stress, �a is the density of air (1:293kg=m

3),
uw and vw are the components of the wind speed measured at some height about the water
surface and Cds is the wind speed drag coe�cient.
Many possible formulations for the drag coe�cient are available. Table I illustrates several

formulations popular with storm surge models. As can be seen in Figure 1, the formulations
produce fairly linear curves for wind speeds above 10 m=s, with the exception of the Van
Dorn [12] formulation which is signi�cantly less at higher wind speeds. The two cases of the
Hsu [13] formulation, which takes into account surface roughness through signi�cant wave

Table I. Descriptions of popular wind stress drag coe�cients applied to storm surge
models. Ws is the magnitude of wind speed (m/s) measured at 10m above the water
surface, �w and �a are the densities of water and air, respectively, k1 = 1:1 × 10−6,
k2 = 2:5× 10−6, Wcr =7:2m=s (14 knots), Tp is the wave period at the spectral peak,

Hs is the signi�cant wave height and g is the gravitational acceleration.

Author(s) Wind stress drag coe�cient (Cds)

Van Dorn [12]
�w
�a

×


k1; if Ws¡Wcr

k1 + k2
(
1− Wcr

Ws

)2
; if Ws¿Wcr

Smith and Banke [14] 0:001× (0:63 + 0:066Ws)

Garratt [15] 0:001× (0:75 + 0:067Ws)

Hsu [13] 0:16×
[
11:0− ln

(
Hs

( gTp2�Ws
)2:6

)]−2
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Figure 1. Calculated wind stress drag coe�cients using several popular formulations.

height and period, are for Hurricane Kate (1985) in the Gulf of Mexico and Hurricane Gloria
(1985) in the Atlantic Ocean, respectively. However, while this formulation is more rigorous,
it does not produce markedly di�erent curves than the much simpler linear formulations of
Smith and Banke [14] and Garratt [15]. For simplicity, the Garratt [15] formulation is used
in the PEM.
The boundary conditions at the bottom (z=−h) are
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(6)

The bottom stress is given using

�bx =
�gU |V |
C2z

�by =
�gV |V |
C2z

(7)
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where the Chezy coe�cient, Cz is given by

Cz=1:0× R1=6

n
(8)

and the hydraulic radius, R is given in meters and n is Manning’s n. In shallow estuaries, the
hydraulic radius is approximated by the total depth.

4. DIFFERENTIAL EQUATIONS FOR THE MODEL

Vertically averaging the continuity and momentum equations over the depth and applying
the vertical boundary conditions yield the following equations for continuity and x- and y-
momentum
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where H is the total depth (h+ �); U and V are the depth averaged velocities (1=H)
∫ �
−h u dz

and (1=H)
∫ �
−h v dz, respectively; Cd is a dimensional drag coe�cient de�ned as g=C

2
z ; and

D=Dt is the total derivative, @=@t +U@=@x + V@=@y.

5. FINITE DIFFERENCE EQUATIONS FOR THE EXPLICIT MODE

A space-staggered grid system is used to discretize the di�erential equations [11]. In the
staggered grid system, elevation is de�ned at the centre of a cell, the U -velocity at the left
and right sides of a cell, and V -velocity at the top and bottom sides of a cell.
The governing di�erential equations as shown in Equations (9)–(11) are �rst given an

explicit discretization of the propagation and bottom friction terms:
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where the subscripts u and v represent a quantity at either the u-node or v-node in the staggered
grid system, H represents the total depth, and F represents the remaining non-linear, di�usion
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and pressure gradient terms. The staggered schemes presented in Equations (12)–(14) possess
second-order spatial accuracy.

6. FINITE DIFFERENCE EQUATIONS FOR THE SEMI-IMPLICIT MODE

The governing di�erential equations as shown in Equations (9)–(11) are given a semi-implicit
discretization of the propagation and bottom friction terms, with the Coriolis term given a
semi-implicit discretization only in the y-momentum equation:
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where Fnu; i; j and F
n
v; i; j represent the remaining non-linear, di�usion and pressure gradient terms

in the x- and y-directions, respectively and �1, �2, and �3 are the degrees of implicitness of
the surface slope, bottom friction and Coriolis terms, respectively. The staggered schemes
presented in Equations (15)–(17) possess second-order spatial accuracy.
The x-momentum equation (16) is �rst solved for Un+1

i; j and then substituted into the Coriolis
term in the y-momentum equation (17) using the following equation
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The new y-momentum �nite di�erence equation is then solved for Vn+1i; j . The i’s in the
Un+1
i; j equation and the j’s in the Vn+1i; j are incremented by one yielding Un+1

i+1; j and V
n+1
i; j+1,

respectively. The resulting 4 momentum �nite di�erence equations, Un+1
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Vn+1i; j+1, are substituted back into the continuity equation (15) resulting in the following 9-
diagonal system of linear equations for the surface elevation, �n+1i; j
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7. THE PARALLEL EULERIAN–LAGRANGIAN METHOD (ELM)

A major di�culty in numerical modelling of free surface �ows is the accurate and e�cient
treatment of the advection and di�usion terms in the governing equations. Numerous numerical
schemes are available to solve these terms; however, few are unconditionally stable and most
have stringent time step limitations. Since the intended use of the PEM is in large scale
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applications with a large number of grid cells, it is important that the model uses time steps
as large as possible to minimize simulation run time. Hence, the optimal method for the PEM
should be unconditionally stable. To this end, the Eulerian–Lagrangian method (ELM) is used
in the PEM to solve the advection and di�usion terms in the governing equations.
The ELM uses the Lagrangian form of the governing equations in an Eulerian computational

grid system. The method is generally referred to as the semi-Lagrangian method in the nu-
merical weather prediction community [16], but is called the Eulerian–Lagrangian method by
estuarine and coastal modelers (e.g. References [17, 18]). Previous studies have also looked
at the challenge of developing parallel ELM algorithm. Behrens [19] developed a parallel
semi-Lagrangian advective scheme for use with an adaptive grid system; however, it was de-
signed for used on a KSR-1 (Kendall Square Research), a virtual shared memory computer,
and would not work well on a distributed memory system. Malevsky and Thomas [20] also
discussed parallel ELM algorithms; however, their methods were based sharing boundary data
between processors.
Following Casulli and Cheng [17], the portion of Fu representing the remaining advection

and di�usion terms in the x-direction can be discretized using the ELM method resulting in
(a similar equation can be developed for Fv, the remaining advection and di�usion terms in
the y-direction)

Fnu; i; j = u
n
i−a; j−b + AH�t

(uni−a−1; j−b − 2uni−a; j−b + uni−a+1; j−b
�x2

)

+AH�t
(uni−a; j−b−1 − 2uni−a; j−b + uni−a; j−b+1

�y2

)
(29)

where a= u�t=�x and b= v�t=�y are the grid Courant numbers.
Because of the non-linearity of the advective terms, the determination of a and b requires

the integration of the streak lines, dx=dt= u and dy=dt= v, in which case the right-hand sides
are known only at time level n. Thus, u and v are assumed to be invariant over a time step
and the streak lines will be integrated numerically backwards from time level n+1 to n using
the Euler method, since the streak lines, which in general are not straight lines, are better
approximated.
In general, a and b are not integers; therefore (i − a; j − b) is not a grid point and an

interpolation formula must be used to solve for uni−a; j−b. For positive a and b, let l and m
be the integer parts and p and q be their corresponding decimal parts, so that a= l+ p and
b=m+ q. Then uni−a; j−b can be approximated as

uni−a;j−b = (1− p)[(1− q)uni−l; j−m + quni−l; j−m−1]
+p[(1− q)uni−l−1; j−m + quni−l−1; j−m−1] (30)

In the PEM, each processor controls only one small portion of the overall grid system. For
each u and v node on a given processor, a streak line is tracked backwards. Depending on the
direction of the �ow and the proximity of the node to a processor boundary, the streak lines
may be tracked to another processor. When this occurs, the original processor which started
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back-tracking the streak line does not have enough information to proceed. To handle these
type of situations a parallel ELM algorithm was developed.
The parallel ELM algorithm consists of two parts. The �rst part attempts to trace back

every needed streak line within a processors domain (Listing 1). If the streak line is tracked
to another processor, a message is sent to the appropriate neighbour processor giving it enough
information about the current progress of the back-tracked streak line such that the neighbour
processor can �nish the backward integration. Once this message has been sent, a counter
identifying the number of uncompleted streak lines is incremented (NUM OUTSIDE GRID)
and the processor continues to track backwards the remaining nodes streak lines. Once all
streak lines have been tracked backwards or messages sent to neighbour processors telling
them to complete the streak line, the �rst part of the algorithm is complete.
In the second part of the algorithm (Listing 2), each processor spins in a loop which

(1) checks for completed streak lines sent back from other processors (Lines 63–68), (2)
checks to see if any neighbour processors have requested that they complete one of their
streak lines (Lines 77–101), and (3) check to see if all of its un�nished streak lines have
been returned (Lines 107–113). As completed streak lines are returned from neighbour pro-
cessors, a counter identifying the number of returned completed streak lines is incremented

Listing 1. Pseudocode representation of the parallel ELM algorithm (Part 1/2).

1 ! Backtrack (as far as possible ) all of the streak lines
2 ! which start in the local subdomain.
3 do J=LOCAL J MIN, LOCAL J MAX ! Local subdomain range of J
4 do I=LOCAL I MIN, LOCAL I MAX ! Local subdomain range of I
5
6 { Initialize the streak line position .}
7 COUNT=0 ! Integration steps
8 OTHER SUB GRID FLAG=0 ! Location of streak line
9 NUM OUTSIDE GRID=0 ! Num. of streak lines outside local grid
10
11 ! Track the streak line backwards a total of NITER steps or if the position of
12 ! the line goes outside the local grid , send the streak line ’ s position to the
13 ! processor containing that section of the grid .
14 do while ( COUNT ¡ NITER .and. OTHER SUB GRID FLAG == 0 )
15 COUNT++ ! Increment integration step
16 {Update the streak line position by interpolation of the
17 velocity �eld at the previous position .}
18 if ( {updated streak line position is outside the local grid} ) then
19 OTHER SUB GRID FLAG=1 ! Set �ag to exit integration loop
20 NUM OUTSIDE GRID++ ! Increment number of streak lines
21 ! outside the local grid
22 {Send a non−blocking message to the processor which contains the streak line
23 at its updated position . This message contains the updated streak line
24 position , its starting position , the starting processor number and the
25 current integration step}
26 endif
27
28 ! If the backward integration is complete, calculate the variable at
29 ! its �nal streak position .
30 if ( COUNT == NITER .and. OTHER SUB GRID FLAG == 0 ) then
31 {Calculate the variable at its �nal streak position .}
32 endif
33
34 end do ! do while ...
35
36 end do ! do I =...
37 end do ! do J=...
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Listing 2. Pseudocode representation of the parallel ELM algorithm (Part 2/2).

38 ! Inform other processors when this process has received back all
39 ! the streak lines it sent out
40 INFORM OTHERS=1
41 ! Number of streak lines sent out that this processor has received back
42 NUM MESSAGES RECEIVED=0
43 COMPLETED=.false. ! Status of all the processors
44
45 ! Loop continuously until all processors have received
46 ! all of their streak lines back
47 do while ( COMPLETED == .false. )
48 {Non−blocking check for incoming streak lines .}
49 if ( {Incoming streak line exists } ) then
50
51 {Accept the incoming streak line .}
52
53 if ( { Integration step of incoming streak line == NITER} ) then
54
55 SENT ON=0 ! Flag to indicate if
56 ! a message was sent
57 if ( {Message �nal destination is not this processor} ) then
58 {Perform one last backward integration }
59 {Send a non−blocking message to the processor which contains the streak
60 line at its updated position . This message contains the updated streak
61 line position , its starting position , the starting processor number and
62 the current integration step .}
63 SENT ON=1
64 endif
65
66 ! If message was not sent on, its �nal destination is this processor
67 if ( SENT ON /= 1) then ! Message was not sent on
68 {Save the variable information passed in the message.}
69 NUM MESSAGES RECEIVED++ ! Increment the count of messages
70 ! received whose �nal destination
71 ! is this processor
72 endif
73
74 else ! Backtrack to get variable
75
76 { Initialize the streak line position to that of the message.}
77 ! Track the streak line backwards a total of NITER steps or if the position
78 ! of the streak line goes outside the local grid , send the streak line ’ s
79 ! position to the processor containing that section of the grid .
80 do while ( COUNT ¡ NITER .and. OTHER SUB GRID FLAG == 0 )
81 COUNT++ ! Increment integration step
82 {Update the streak line position by interpolation of the
83 velocity �eld at the previous position .}
84 if ( {updated streak line position is outside the local grid} ) then
85 OTHER SUB GRID FLAG=1 ! Set �ag to exit integration loop
86 {Send a non−blocking message to the processor which contains the streak
87 line at its updated position . This message contains the updated streak
88 line position , its starting position , the starting processor number and
89 the current integration step .}
90 endif
91 end do ! do while ...
92
93 ! If the backward integration is complete, calculate the variable at its �nal
94 ! streak position and send the result to its processor of origin .
95 if ( COUNT == NITER .and. OTHER SUB GRID FLAG == 0 ) then
96 {Calculate the variable at its �nal streak position .}
97 {Send a non−blocking message to the processor which contains the streak line
98 at its updated position . This message contains the updated streak line
99 position , its starting position , the starting processor number and the
100 current integration step .}
101 endif
102
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103 endif ! Integration step == NITER
104
105 endif ! Incoming streak line
106
107 ! If this processor has received back all of the streak lines it sent to other
108 ! processors , then send a signal to the other processors .
109 if ( NUM MESSAGES RECEIVED == NUM OUTSIDE GRID .and.
110 INFORM OTHERS == 1 ) then
111 {Send completion signal to all other processors .}
112 INFORM OTHERS=0 ! Only inform others once
113 endif
114
115 ! Check for completion signal from other processors
116 {Non−blocking check for completion signal.}
117 if ( {A completion signal is present} ) then
118 {Read and record which processor sent the signal .}
119 endif
120
121 ! If this processor has received all of its streak lines then check to see if all of
122 ! the other processors have completed their streak lines , if so then terminate the
123 ! main loop.
124 if ( {This processor has received all its streak lines back} ) then
125 if ( {All other processors have received their streaks lines back} ) then
126 COMPLETED=.true. ! Flag will terminate main loop
127 endif
128 endif
129
130 end do ! do while ...

(NUM MESSAGES RECEIVED). Once all of a given processors un�nished streak lines have
been returned (NUM MESSAGES RECEIVED = NUM OUTSIDE GRID), a message is sent
to all other processors telling them that this processor has completed (Line 111). Upon receipt
of a similar message from all other processors, the processors then exit their respective spin
loops (Lines 115–128).

8. STORM MODEL EQUATIONS

One of the most important parts of a numerical model used to simulate storm surge is the storm
model itself. A good storm model is necessary to determine rapidly changing atmospheric
pressure gradient and wind stress associated with the passage of a storm. While a planetary
boundary layer (PBL) model [21–23] would be the best choice for a storm model, a PBL
model is too complex for the purposes of this study. Instead a simple storm model assuming
an exponential decay of pressure from the center of a storm is used. The governing pressure
gradient terms and wind �eld (used to calculate the wind stresses, �x and �y) can be derived
as follows.
The local air pressure in a storm, P, can be written as [24]

P=Po + (P∞ − Po)e−A=rB (31)

where Po is the pressure in the centre on the storm, P∞ is the freestream pressure, r is the
distance from the centre of the storm and A and B are scaling parameters. However, for the
purposes of this study, the simpler local air pressure formulation of Wilson [25] is used (A is
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set equal to the radius of maximum wind speed, R, and B is set equal to 1). The remaining
derivation then follows in the manner of Wilson [25].
Subtracting P∞ from both sides and rearranging the right-hand side yields,

P − P∞=(Po − P∞)(1− e−R=r) (32)

The left-hand side is the relative atmospheric pressure, Pa, and Po − P∞ is the central
pressure drop of the storm, �Po. Making these substitutions, the equation can be rewritten as

Pa =�Po(1− e−R=r) (33)

The air pressure term in the x- and y-momentum equations consists of derivatives of Pa
with respect to x and y, respectively. The terms, after negating and dividing by water density
are

− 1
�w
@Pa
@x

=
�Po
�w

@
@x
(e−R=r) (34)

− 1
�w
@Pa
@y

=
�Po
�w

@
@y
(e−R=r) (35)

The �nite di�erence forms of the x- and y-momentum air pressure terms used in the model
are evaluated at the u- and v-nodes, respectively

− 1
�w
@Pa
@x
=
�Po
�w�x

(e−R=ri; j − e−R=ri−1; j) (36)

− 1
�w
@Pa
@y

=
�Po
�w�y

(e−R=ri; j − e−R=ri; j−1) (37)

The distance, ri; j, is measured from the centre of the storm to the center of the (i; j) cell.
The storm also in�uences the elevation at open boundaries, �open = �tide + �storm. The surface

elevation due to the pressure of the storm can be written as

�storm =
Pa
�wg

=
�Po
�wg

(1− e−R=r) (38)

The cyclostrophic wind velocity, Uc, is

Uc =

√
−�Po
�a

R
r
e−R=r (39)

The geostrophic wind velocity, Ug, is

Ug =−�Po
f�a

R
r2
e−R=r (40)

The gradient wind velocity, UG is

UG =Uc(
√
�2 + 1− �) (41)
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where

�=
1
2

(
V ∗
s

Uc
+
Uc
Ug

)
(42)

and the resolved part, V ∗
s , of the translational velocity of the storm, Vs is

V ∗
s =Vs sin(�) (43)

where � is the angle from the direction of bearing of the storm, �, to any point inside the
storm. The surface wind velocity, Us, in the x- and y-directions is then written as

Usx =KUG cos(90 + �+ �+ 	) (44)

Usy =KUG sin(90 + �+ �+ 	) (45)

where 	 is an inward rotation angle of 18◦ and K is the ratio of surface wind velocity to
gradient wind velocity.

9. SOLUTION TECHNIQUE

When performing simulations, PEM operates in either an explicit or semi-implicit mode.
Explanation of how the water level and velocities are calculated in these modes follows. The
message passing technique that is used to explicitly pass data between processors conforms to
the message passing interface (MPI) standard. Speci�cally, MPICH [26], a portable version
of MPI, libraries are used in the PEM.

9.1. The explicit mode

Due to stringent time step limitations, the explicit mode is generally used only for testing
purposes. First, tidal, wind and pressure boundary conditions are updated for the new time
level. Then external mode equations are solved on each processor (Equations (12) through
(14)). Next, the boundary water levels and velocities which may be used by a given cell’s
neighbour processors are passed in the order shown in Figure 2. Then, the parallel ELM is
used to calculate the non-linear and di�usion terms at the new time level. Finally, the time
step is incremented and process of solving the equations begins again.

9.2. The semi-implicit mode

As with the explicit mode, the �rst step is to update the tidal, wind and pressure gradient
boundary conditions for the new time level. Then, the 9-diagonal system of linear equations
for water level (Equation (19)) are solved using Aztec (Version 2.1) [27]. Aztec is a parallel
iterative library that solves linear systems of equations of the form Ax= b, where A is a given
n × n sparse matrix, b is a given vector of length n, and x is the vector of length n to be
calculated. Parallel communication in the Aztec routines is based on the MPI standard.
Aztec includes a number of solution and scaling algorithms, preconditioners and residual

expressions for determination of convergence; however, not all options are applicable to the
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Send Receive

To North

To South

To East

To West

From North

From South

From East

From West

Figure 2. The order of the send and receive operations in the PEM. The cells with dotted lines on the
receiving processors are termed ‘ghost cells’.

9-diagonal system of equations given in (19). The solution algorithms used in this study
are conjugate gradient squared (CGS), transpose-free quasi-minimal residual (TFQMR) and
bi-conjugate gradient with stabilization (BICGSTAB). The scaling algorithms used are point
Jacobi, scaling each row so the magnitude of its elements sum to 1, symmetric scaling so
diagonal elements are 1 and symmetric scaling using the matrix row sums. The residual
expression chosen to check for convergence is

‖r‖2
‖r(0)‖2¡Tolerance (46)

Aztec works with two speci�c sparse matrix formats: (1) a point-entry modi�ed sparse row
(MSR) format [28] or (2) a block-entry variable block row (VBR) format [29]. Aztec gen-
eralizes these formats for parallel implementation and are referred to as ‘distributed’ yielding
DMSR and DVBR, respectively. Further details on Aztec’s implementation of these formats
can be found in Tuminaro et al. [27]. The PEM uses the MSR format.
After the water level is updated, the velocities are calculated using Equations (16) and (17).

Next, as with the external mode, after a given time step has been completed, the boundary
water levels and velocities of each processor are passed to its neighbour processors (Figure 2).
Then, the parallel ELM is used to calculate the non-linear and di�usion terms at the new time
level. Finally, the time step is incremented and the process of solving the equations begins
again.
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x=0 x=L
y=0

y=W

τx

Figure 3. Computational grid for the simple wind forcing analytic test.

Table II. A comparison between the analytic and simulated steady state setup of water level.

x (km) �theoretical (cm) �simulated (cm)

0.5 −2:04 −2:04
10.5 0 0.00
20.5 +2.04 +2.04

10. MODEL VERIFICATION

Before a numerical model can be applied to a real system, it is necessary to verify the accuracy
of the various numerical schemes of the model. This section presents the numerical accuracy of
the 2D, parallel, wetting and drying numerical model, PEM, by comparing model results with
a number of analytic solutions describing the circulation in idealized basins forced by wind
and tide with and without Coriolis acceleration and wetting and drying. All simulations were
�rst performed serially and then in parallel to ensure the accuracy of the parallel algorithms.
In addition, the parallel speedup of the explicit scheme and the semi-implicit and implicit
schemes are presented along with a discussion of how the characteristics of the iterative
solver a�ect the implicit calculations.

10.1. Wind forcing

The analytical setup due to a constant wind stress in a rectangular basin can be written as

�(x)=
�w
�gh

(
x − L

2

)
(47)

where � is the setup of the water surface, �w is the applied wind stress, H (= h+ �) is the
total depth of the water column, L is the length of the basin and x is the distance from the
left edge. The depth is chosen such that h� � so that H can be approximated by h.
The computational grid used in the wind stress test is a 21 × 5 cell, orthogonal grid with

a length, L, of 21 km and a width, W , of 5 km (Figure 3). The depth is a constant 5 m and
the grid spacings, �x and �y are �xed at 1 km. A constant wind stress of 1 dyne=cm2 is
applied in the positive x-direction and a 900s time step is used in the model. Table II shows
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the comparison between the simulated water level and the water level determined from the
analytic solution. The model simulates this analytic test case exactly.

10.2. Tidal forcing with Coriolis

The linearized 2D shallow water equations of continuity, x- and y-momentum without friction
or di�usion take the following form:

@

@t
+
@U
@x
+
@V
@y
=0 (48)

@U
@t
+ c2

@

@x

−	V =0 (49)

@V
@t
+ c2

@

@y
+	U =0 (50)

where 
 is the surface elevation, U and V are the vertically integrated velocities in the x-
and y-directions, respectively, t is time, 	 is the Coriolis parameter and c=

√
gH is the wave

celerity and assuming that the depth, H is much larger than the surface elevation.
Assuming only one tidal constituent with a period T =2�=�, these equations can be solved

for U , V , and 
 [30] and are given as

U (x; y; t) =
ic2��

(�2 −	2)x1
∞∑
m=1
mHm

[
1 +

	2k2mx21
�2m2�2

]

× sin
(
m�x
x1

)
exp(−ik2m(y1 − y)− i�t) (51)

V (x; y; t) =
Hom2c2

�

[
R exp

(
	m2x
�

− im2(y1 − y)
)]
exp(−i�t)

− Hom2c
2

�

[
exp
(
	m2(x1 − x)

�
+ im2(y1 − y)

)]
exp(−i�t)

+
∞∑
m=1
Hm

[
k2m
�
cos
(
m�x
x1

)
+
	x1
m�c2

sin
(
m�x
x1

)]
× exp(−ik2m(y1 − y)− i�t) (52)


(x; y; t) =Ho exp
(
	m2(x1 − x)

�
+ im2(y1 − y)− i�t

)

+RHo exp
(
	m2x
�

− im2(y1 − y)− i�t
)

+
∞∑
m=1
Hm

[
cos
(
m�x
x1

)
+
	k2mx1
�m�

sin
(
m�x
x1

)]

× exp(−ik2m(y1 − y)− i�t) (53)
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where x1 is the length of the basin in the x-direction, y1 is the length of the basin in the
y-direction and Ho is the amplitude of the tidal forcing at the open boundary. The wave
numbers of the mth Poincare mode and that of the Kelvin are given by

k22m =−
[
m2�2

x21
− �2 −	2

c2

]
(54)

m22 =
�2

c2
(55)

The unknown constants, R, H1, H2, . . . , HN are obtained when the equation for V (x; y; t)=0
is satis�ed yielding

Hom2

[
R exp

(
	m2x
�

)
− exp

(
	m2(x1 − x)

�

)]

+
∞∑
m=1
Hm

[
k2m cos

(
m�x
x1

)
+
	x1�
m�c2

sin
(
m�x
x1

)]
=0 (56)

To solve for the unknown constants, the equation is truncated at the N th term leaving
N + 1 unknowns. The equation is then applied to N + 1 points on (0; x1) resulting in N + 1
simultaneous equations for the N + 1 unknowns which are then solved. As N is increased, a
converging sequence of values is found for R and each of the Hm’s. The computational grid
used in the wind stress test is a 40 × 40 cell, orthogonal grid with a length and width of
41km (Figure 4). The depth is a constant 10m and the grid spacings, �x and �y are �xed at
1 km. Using the analytic solution, surface elevation and velocity are imposed at the southern
boundary with 	=0:00001, T =12h, and Ho = 50cm. As can be seen in a comparison between
the simulated and measured water level and velocity (Figure 5), the model is able to simulate
this analytic test well.

10.3. Tidal forcing in a basin with linearly varying depth

To validate the wetting and drying scheme developed, a robust analytical test needs to be
performed. Carrier and Greenspan [31] obtained the theoretical solution to wave propagation
on a linearly sloping beach (Figure 6).
The one-dimensional non-linear shallow water equations can be written as

@
∗

@t∗
+

@
@x∗

[(
∗ + h∗)u∗] = 0 (57)

@u∗

@t∗
+ u∗

@u∗

@x∗
+ g

@
∗

@x∗
=0 (58)

where asterisks denote dimensional quantities, 
 is the water surface elevation above the mean
water level, h is the still water depth which varies linearly with x, and u is the velocity in
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Plate 1. The simulated maximum depth of �ooding during the passage of hypothetical Category 5
hurricane using the �ne grid and making landfall at high tide. The surface area of �ooded land and

average depth of �ooding are 584 km2 and 5:04 m, respectively.
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a

cb

40 km

40
k

m

U=0

V=0

U=0

η=η (x,t)

Figure 4. Grid system for Coriolis test. The three stations used for compar-
ison are given the letters: a, b, and c.

the x-direction. Letting L be the characteristic length scale of the wave, the time and velocity
scales can be de�ned as

T =

√
L
	g

(59)

uo =
√
	gL (60)

where 	 is the beach angle. The equations are then non-dimensionalized using the following
relations:

x=
x∗

L

t =
t∗

T
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Figure 5. A comparison between analytic and simulated surface elevation and velocity at the three
locations, a, b, and c. Solid lines indicate analytic solutions for surface elevation while dotted lines
indicate analytic solutions for velocity in the y-direction. Circles indicate the simulated solution for

surface elevation and squares indicate the simulated solution for velocity in the y-direction.
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Figure 6. Wave propagating on a linearly sloping beach.
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=

∗

	L
(61)

h=
h∗

	L
= x

u=
u∗

uo

De�ning c= x + 
 and using the variables �=4c, �=2(t − u), and a potential, ’(�; �),
[31] proposed the following expressions:

t =
�
2
+ u=

�
2
+
’�
�

(62)

x=
u2

2
+ c2 +

’�
4
=
1
2

(’�
�

)2
+
’�
4
+
�2

16
(63)


= c2 − x= �
2

16
− x=−’�

4
− �2

16
(64)

u=
’�
�

(65)

c=
�
4

(66)

’(�; �) =−8AoJ0
(�
2

)
sin
(
�
2

)
(67)

where Ao is an arbitrary amplitude parameter and J0 is a zeroth order Bessel function of
the �rst kind. The potential, ’ represents a standing wave solution resulting from the perfect
re�ection of a unit frequency wave.
Equations (62) through (66) give t; x; 
; u, and c parametrically in terms of � and �. In

general, it is di�cult to obtain direct functional relationships for 
 and u in terms of x and
t. To evaluate 
(x; t) and u(x; t) for a given x and t, Equations (62) through (66) must be
solved numerically. For speci�c values of x and t, � and � are determined using a least
squares method so that 
(x; t) and u(x; t) are easily obtained from Equations (64) and (65),
respectively.
The length of the basin, Lx, is 62km and the width 10 km. The bottom slope, �, is 1:2500.

The height above still water on the left side, HL is 2m and the depth below still water on the
right side, HR is 24m. The period of the long wave is 1h or a frequency, !∗, of 0:0017451=s.
The characteristic length scale, L is de�ned by

L=
	g
(!∗)2

=1288 m (68)

which yields the velocity scale

uo =
√
	gL=2:25 m=s (69)
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For the numerical simulation, a 620 × 5 rectangular grid (�x=100 m; �y=2000 m) is
used along with a time step of �t=30s. The degree of implicitness, �1, is chosen to be 0.55
and the tolerance of the conjugate gradient solver is 10−6. At t=0 an initial wave form, as
calculated by the theoretical solution, is applied to the surface elevation. For t¿0, the wave
amplitude at the o�shore boundary, 
∗(t) is given by


∗(t)= 
(t)	L (70)

where 
(t) is the dimensionless value of the wave amplitude obtained from the theoretical
solution. After three periods, the numerical solution of the standing wave is obtained and
compared to the theoretical solution.
Figures 7 and 8 show comparisons between simulated and theoretical wave pro�les over

the length of the basin during 7 time instants of a half period. The model is able to simulate
the wetting and drying of the shoreline well.

10.4. Conjugate gradient tolerance analysis

As previously discussed, an iterative solver is used to solve the 9-diagonal matrix
(Equation (19)) for surface elevation which results from a semi-implicit or implicit discretiza-
tion. This matrix is solved using Aztec [27], a parallel iterative solver. The iterative solving
algorithm ceases if a residual (Equation (46)) is less than a speci�ed tolerance. To determine
the e�ect of changing this tolerance on the outcome of the numerical solver, several simu-
lations were performed using di�erent tolerances. The simulation chosen is the analytic test
for tidal forcing with Coriolis discussed previously. Comparisons between the simulated water
level and velocities using the very small default tolerance (10−6) and larger ones are shown
in Table III. The results show that a tolerance as large 10−4 changes the results by less than
10−4%.

10.5. Parallel timing analysis

To determine how well the model performs in parallel, simulations are performed using vari-
ous processor and simulation con�gurations on the explicit, semi-implicit and implicit model
formulations. In addition, the conjugate gradient algorithm in Aztec [27] can be modi�ed;
thus, a�ecting the simulation time. The simulation chosen as a basis for experimentation is
the simple wind setup test described previously. Figure 9 shows the grid con�guration for a
multi-processor case with the x-direction split among four processors.

10.5.1. Explicit mode. In general, explicit discretization of equations yields equations which
are easily solved in parallel. Di�culty and loss of speed occurs only at the end of a given time
step when information must be passed to other processors. However, due to stringent time step
limitations (�t6�x=u), explicit formulations are di�cult to use in practical simulations which
require fast simulation times and small grid spacings. Parallel speedup for various grid sizes
using a 1 s time step is shown in Figure 10. These results show how the speedup improves
with a larger number of grid cells in the x-direction; however, as the number of cells in the
y-direction gets larger (the direction through which data is passed to other processors), the
speedup decreases.
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Figure 7. Non-dimensional wave pro�les as predicted by theory and the
numerical model for times t=0 through t=�=2.

10.5.2. Semi-implicit and implicit modes. While implicit discretization is more di�cult to
parallelize, it allows much larger time steps to be used during a simulation. Analysis of the
parallel speedup for various grid con�guration using the implicit modes (Figure 11(a) and
11(b)) show that the model’s speedup is not a function of either Nx or Ny explicitly, but as a
function of the total number of grid cells (Nx×Ny). In other words, the speedup characteristics
of the 1600×25 con�guration is nearly the same as the speedup characteristics of the 200×200
con�guration.
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Figure 8. Non-dimensional wave pro�les as predicted by theory and the
numerical model for times t=2�=3 through t=�.

In addition to varying simulation parameters, parallel timing simulations were performed
using the various con�gurations available with Aztec’s iterative solver (Figure 12). The conju-
gate gradient squared algorithm showed signi�cantly better speedup characteristics than either
the TFQMR or BICGSTAB algorithms; however, none of the scaling algorithms showed
signi�cantly better speedup characteristics than any of the other scaling algorithms. As the
tolerance of the iterative solver is enlarged, fewer iterations are required thus reducing re-
quired inter-processor communications. This reduction in communication thus improves the
speedup characteristics of the model.
As can be seen from the previous results, e�ciencies increase with larger grid sizes. Figure

13 shows a series of simulations performed on large grid systems illustrating this point. For
the 200 × 6400 (1.28 million computational cells) and 20 processors, a speedup of 15.10 is
reached.

10.5.3. Note on linear decomposition. Currently, the PEM only allows the grid system to split
entirely in the x-direction or entirely in the y-direction. In general, a two-dimensional domain
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Table III. The RMS di�erence (=10−4) between the surface elevation, 
, u-averaged,
U , and v-averaged, V , velocities calculated with a conjugate gradient tolerance of
10−6 and the results calculated with tolerances of 10−2, 10−3, 10−4, and 10−5.
Results shown are for the 5 day simulation used to compare with the analytic test for

Coriolis and are given in units of m and m/s, respectively.

Tolerance

Station Variable 10−2 10−3 10−4 10−5 10−6

a 
 5.41 1.35 0.57 0.17 0.00
b U 1.49 0.29 0.12 0.00 0.00
c V 3.07 0.71 0.24 0.17 0.00

a 
 4.52 1.25 0.47 0.17 0.00
b U 1.20 0.37 0.29 0.24 0.00
c V 5.00 1.34 0.49 0.37 0.00

a 
 4.57 1.28 0.49 0.12 0.00
b U 2.55 0.59 0.12 0.24 0.00
c V 5.08 1.45 0.60 0.51 0.00

Nx

Ny

P0 P1 P2 P3

Figure 9. Four processor grid con�guration for the simulations used to calculate speedup with the PEM.
The number of cells in the x- and y-directions are Nx and Ny, respectively.

decomposition con�guration would be more e�cient. For example, assuming an overall grid
size of 1400 × 640 and 2 ghost cells, a 20 × 1 con�guration needs to communicate 1.8
times more information than a 4 × 5 con�guration. Future versions of the PEM will include
the ability to handle two-dimensional domain decompositions and will improve the speedup
characteristics of the PEM for both the explicit and implicit modes.

11. APPLICATION

In the following section, an typical PEM application is presented: the storm surge caused by a
hypothetical hurricane making landfall in the Indian River Lagoon, Florida. A detailed model
calibration and veri�cation study of the Indian River storm surge simulations will be reported
separately.
The Indian River Lagoon (Figure 14) is an estuary located in Brevard County on the

Atlantic coastal of central Florida. The lagoon is approximately 240 km long and extends
from Ponce de Leon Inlet in the north to Jupiter Inlet in the south. The lagoon is 2–4 km
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Figure 10. Parallel speedup using the explicit PEM and various grid con�gurations. The time steps are
1 s and the number of cells in the opposite direction is �xed at (a) Ny=25 and (b) Nx=200.

wide with an average depth of 2 m outside of the Intracoastal Waterway (ICW). The lagoon
receives fresh water from numerous natural creeks, rivers and man-made canals.
For the IRL storm surge simulations, a 1400× 640 grid was developed for the PEM. The

entire grid system was then split into a 20 processor con�guration to correspond with a 20
processor Beowulf Cluster [32]. Each node of the cluster consists of a dual processor 450MHz
Dell PowerEdge 1300 with 256 MB of main memory. The IRL PEM grid system has a con-
stant �x and �y of 125 m and was divided evenly in the x-direction such that each of the
20 processors solved a 70× 640 section of the overall grid (Figure 15). The grid system was
designed to both include as much of the land area to the west of the lagoon as practically
possible for simulation of �ooding due to storms and include as much of the o�shore area as
possible to minimize the e�ect of the boundary on model results. Grid elevation was speci�ed
using high resolution bathymetric surveys and �ve foot Digital Elevation Model (DEM) to-
pographic contours provided by the St. Johns River Water Management District (SJRWMD).
Although the Cartesian grid system can only �t the complicated shoreline geometry in a ‘stair-
step’ fashion, the very �ne grid resolution is su�cient to resolve all but the smallest coastal
features. A curvilinear grid version of the PEM capable of boundary-�tting the shoreline is
being developed.
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Figure 11. Parallel speedup using the semi-implicit PEM for various grid sizes where
(a) Ny=25 and (b) Nx=200.

Using the historically most probable approach direction of a landfalling hurricane in Brevard
County [33], 130◦, a hypothetical hurricane track was developed (Figure 16). The hypothetical
storm was designed to have a translational velocity of 10 knots, a radius to maximum wind
speed of 20 n mi and a ratio of surface wind velocity to gradient wind velocity of 1.4. These
properties yield a maximum wind speed 160 mph making it a large Category 5 [34] (wind
speed greater than 155 mph) hurricane. The impact point was speci�ed to be at False Cape
(80 34 34 W, 28 35 12 N).
To simulate the storm surge in the lagoon due to the landfalling hypothetical hurricane, the

PEM model was setup to simulate 6 days in 1999, 3 October through 9 October, using a time
step of 15 min. The hurricane made landfall approximately halfway through the simulation
period, 6 October (10:57 pm). Using water level measured at Sebastian Inlet, measured tidal
forcing was speci�ed at the ocean open boundary for the entire simulation with the hurricane
making landfall exactly at high tide. The wind and air pressure �elds were generated using
the simple storm model contained within the PEM.
Plate 1 illustrates the amount of �ooding caused by the hurricane making landfall at high

tide. This simulation shows the large amount of �ooding which would be associated with
landfall of a major hurricane. All of the northern part of Merritt Island is �ooded along with
a signi�cant portion of the river front in the northern IRL. More �ooding is seen on the IRL
itself rather than areas closer to the ocean such as Banana River.
The six day simulation was performed on the 20-processor Beowulf Cluster described pre-

viously and was completed in 13:0 h (11× real time). The parallel solution of the 9-diagonal
coupled system of equations took 82.2% of the total computational time, while the parallel
ELM routine, used to calculate the non-linear and di�usion terms, took approximately 17.5%
of the total simulation time.
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Figure 12. Parallel speedup using the semi-implicit PEM and various iterative solve
con�gurations. The algorithm, scaling and tolerance are (a) Row Sum and 10−6,

(b) CGS and 10−6 and (c) CGS and Row Sum.

12. CONCLUSIONS

A new parallel storm surge model, the Parallel Environmental Model (PEM), is developed and
veri�ed through comparisons with analytic solutions. The PEM is a 2-D vertically averaged,
wetting and drying numerical model. The propagation, bottom friction and Coriolis terms are
solved semi-implicitly resulting in a 9-diagonal system of equations which is solved using
the parallel solver, Aztec. The advection and di�usion terms are solved with a new parallel
Eulerian–Lagrangian scheme developed for this study. It is noted that the parallel ELM al-
gorithm developed could be easily adapted by developers of other parallel ocean or estuary
models. Storm boundary conditions are based on a simple exponential decay of pressure from
the center of a storm.
The PEM was developed speci�cally for use on parallel computer systems and will function

accordingly in either explicit of implicit modes. The model was veri�ed with various analytic
solutions. As an example application, the storm surge caused by a landfalling Category 5
hurricane was simulated. When landfall occurs directly at high tide, nearly 5 m of �ooding
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Figure 13. Parallel speedup using the semi-implicit PEM for large values of Ny where Nx=200 and
�t=900. Results are calculated for one time step.

Figure 14. Location of the Indian River Lagoon study area.

was simulated. The simulation presented was designed to show a typical application of the
PEM, detailed model calibration and veri�cation of the Indian River storm surge simulations
will be reported separately.
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Figure 15. The IRL grid system developed for the PEM (�x=�y=125 m).

Figure 16. The track of the hypothetical hurricane making landfall at False
Cape, just north of Cape Canaveral.
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The overall model performed well with good parallel speedup and e�ciency characteristics;
however, for the example simulation, nearly 20% of the model’s execution time was spent in
the parallel ELM algorithm. As the algorithm tracks streak lines backward, they may enter
the domain of other processors. When this occurs, a message must be sent the corresponding
processor so that it may continue the streak line backwards. This message passing between
processors is the slowest part of the algorithm. It is hypothesized that this phase can be sped
up by using the processors ‘ghost cells’ in streak line calculation. Currently, the parallel ELM
algorithm sends a message to its neighbour even if only one cell outside the boundary is
needed for streak line calculation.
While the current two-dimensionality of the PEM does limit its applications, the model is

highly amenable to modi�cation and conversion of the model to three-dimensions as well as
the addition of salinity and temperature transport to the model is progressing. Future versions
of the PEM will also include the addition of a wave model, better storm formulation as well
as coupling with GIS to produce quantitative analysis of a storm’s impact such as numbers
of home and road’s �ooded.
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